, (3.9)
где z – количество ремней;
e – принимаем согласно [3], равной 12 мм;
f – принимаем согласно [3], равной 8 мм.
Наружные диаметры шкивов, мм определяем по формуле 3.9:
(3.10)
где b – принимаем согласно [3], равным 2,5 мм.
,
.
Диаметры по дну канавки, мм определяем по формуле 3.11:
(3.11)
где Н – принимаем согласно [3], равным 10 мм.
d j1 = 68 – 2 * 10 = 48
d j2 = 245 – 2 * 10 = 225
Диаметры ободов, мм определяем по формуле 3.12
d обi = d Ii – 2d (3.12)
где d-принимаем согласно [3], равной 6 мм.
d об1 = 48 – 2 * 6 = 36
d об2 = 225 – 2 * 6 = 213
Исходными данными для расчёта вала являются крутящий момент на валу Т3, равный 262 н*м и вес коробки передач равный 1176 Н, схема нагружения представлена на рисунке 3.7.
Рисунок 3.7 - Схема нагружения рабочего вала
Принимаем расстояния L1 равным 150 мм, расстояние L2 равным 200 мм, расстояние L3 равным 200 мм.
Подбираем материал вала, согласно [2] и определяем допускаемые напряжения. Для изготовления вала принимаем сталь 45 с
пределом прочности sв равным 510 МПа, ГОСТ 1050–88.
Допускаемые напряжения на изгиб, МПа находим по формуле 3.13
[sи] = s -1: ([n] K б), (3.13)
где s-1 – предел выносливости, равен 219 МПа;
[n] – коэффициент запаса прочности, принимаем 2;
К б – коэффициент концентрации напряжений равен 2.2.
[sи] = 219: (2 * 2.2) = 50
Допускаемые напряжения на кручение, МПа определяем используя формулу 3.14
[t] = 0.5 [sи] (3.14)
[t] = 0.5 * 50 = 25
Строим расчётную схему сил, действующих в вертикальной плоскости рисунок 3.8.а.
Рисунок 3.8. Расчётные схемы рабочего вала стенда
а-силы действующие на вал в в вертикальной плоскости; б-эпюра изгибающих моментов в ветикальной плоскости; в-эпюра крутящего момента; г-эпюра эквивалентного момента.
Определяем реакции на опорах, Н от сил в вертикальной плоскости используя рисунок 3.8.а:
![]()
;
;
.
![]()
;
;
.
Определяем изгибающие моменты от сил, действующих в вертикальной плоскости, Нмм:
в сечении 1–1
M u1 = Gk (L1 + L4)
M u1 = 1176 * (150 + 58) = 244608
в сечении 2–2
M u2 = Gk (L1 + L2)
M u2 = 1176 * (150 + 100) = 294000
По найденным значениям строим эпюру изгибающих моментов представленную на рисунке 3.8.б.
Рассматривать вал в горизонтальной плоскости не имеет смысла так как силы действующие на вал в этой плоскости незначительны по сравнению с вертикальными и ими можно принебречь.
Строим эпюру крутящего момента, действующего на весь вал и имеющего постоянное значение, рисунок 3.8.в.
Определяем эквивалентные моменты, Нмм:
в сечении 1–1
;
Популярное на сайте:
Учет навигационных ограничений
При плавании в узкости маневр, который выбирают и обосновывают для расхождения, должен одновременно и в равной степени обеспечивать и навигационную безопасность судна. С этой целью при обосновании маневра следует: – исходя из навигационной обстановки знать безопасное расстояние отхода от линии пути ...
Расчет оси колесной пары вероятностным методом
В данном пункте курсового проекта исследуем зависимость напряженного состояния и значений коэффициента запасов усталостной прочности оси от осевой нагрузки (массы вагона брутто). Расчёт новой оси колёсной пары при ее проектировании или оценке прочности стандартной (типовой) оси при намечаемом измен ...
Технология обработки поездов, прибывших в расформирование
На каждый сформированный поезд станция формирования составляет натуральный лист, в котором в порядке фактического размещения в составе приведены основные сведения о вагонах. Подготовка прибывшего на станцию поезда к расформированию состоит в следующем: прием работником технической конторы документо ...