, (3.9)
где z – количество ремней;
e – принимаем согласно [3], равной 12 мм;
f – принимаем согласно [3], равной 8 мм.
Наружные диаметры шкивов, мм определяем по формуле 3.9:
(3.10)
где b – принимаем согласно [3], равным 2,5 мм.
,
.
Диаметры по дну канавки, мм определяем по формуле 3.11:
(3.11)
где Н – принимаем согласно [3], равным 10 мм.
d j1 = 68 – 2 * 10 = 48
d j2 = 245 – 2 * 10 = 225
Диаметры ободов, мм определяем по формуле 3.12
d обi = d Ii – 2d (3.12)
где d-принимаем согласно [3], равной 6 мм.
d об1 = 48 – 2 * 6 = 36
d об2 = 225 – 2 * 6 = 213
Исходными данными для расчёта вала являются крутящий момент на валу Т3, равный 262 н*м и вес коробки передач равный 1176 Н, схема нагружения представлена на рисунке 3.7.
Рисунок 3.7 - Схема нагружения рабочего вала
Принимаем расстояния L1 равным 150 мм, расстояние L2 равным 200 мм, расстояние L3 равным 200 мм.
Подбираем материал вала, согласно [2] и определяем допускаемые напряжения. Для изготовления вала принимаем сталь 45 с
пределом прочности sв равным 510 МПа, ГОСТ 1050–88.
Допускаемые напряжения на изгиб, МПа находим по формуле 3.13
[sи] = s -1: ([n] K б), (3.13)
где s-1 – предел выносливости, равен 219 МПа;
[n] – коэффициент запаса прочности, принимаем 2;
К б – коэффициент концентрации напряжений равен 2.2.
[sи] = 219: (2 * 2.2) = 50
Допускаемые напряжения на кручение, МПа определяем используя формулу 3.14
[t] = 0.5 [sи] (3.14)
[t] = 0.5 * 50 = 25
Строим расчётную схему сил, действующих в вертикальной плоскости рисунок 3.8.а.
Рисунок 3.8. Расчётные схемы рабочего вала стенда
а-силы действующие на вал в в вертикальной плоскости; б-эпюра изгибающих моментов в ветикальной плоскости; в-эпюра крутящего момента; г-эпюра эквивалентного момента.
Определяем реакции на опорах, Н от сил в вертикальной плоскости используя рисунок 3.8.а:
![]()
;
;
.
![]()
;
;
.
Определяем изгибающие моменты от сил, действующих в вертикальной плоскости, Нмм:
в сечении 1–1
M u1 = Gk (L1 + L4)
M u1 = 1176 * (150 + 58) = 244608
в сечении 2–2
M u2 = Gk (L1 + L2)
M u2 = 1176 * (150 + 100) = 294000
По найденным значениям строим эпюру изгибающих моментов представленную на рисунке 3.8.б.
Рассматривать вал в горизонтальной плоскости не имеет смысла так как силы действующие на вал в этой плоскости незначительны по сравнению с вертикальными и ими можно принебречь.
Строим эпюру крутящего момента, действующего на весь вал и имеющего постоянное значение, рисунок 3.8.в.
Определяем эквивалентные моменты, Нмм:
в сечении 1–1
;
Популярное на сайте:
Схема составных частей узла
1. Поворотный рычаг 2. Шаровой шарнир рулевой тяги 3. Наружный наконечник тяги. 4. Гайка наружного наконечника. 5. Коническая втулка. 6. Регулировочная муфта. 7. Внутренний наконечник тяги 8. Накладка. 9. Скоба крепления тяги 10. Грязезащитный чехол 11. Опора рулевого механизма 12. Скоба опоры 13. ...
Rolfo
Акционерная компания ROLFO S.p.A. была основана в 1885 году и уже более 120 лет является одной из ведущих компаний в области производства автотранспортной техники. Старая мастерская, основанная Джоржио Рольфо, в которой создавались телеги и повозки, превратилась в одну из самых больших групп в комм ...
Расчет затрат на запасные и ремонтные материалы
Затраты на запасные части для ремонта подвижного состава СЗЧ=НЗЧ ×Lобщ×Кинф×Ку/1000, (64) где НЗЧ- норма затрат на запасные части на 1000 км Ку –коэффициент корректирования, учитывающий категорию условий эксплуатации, тип подвижного состава и т.д. Кинф- коэффициент информации. СЗЧ ...