, (3.9)
где z – количество ремней;
e – принимаем согласно [3], равной 12 мм;
f – принимаем согласно [3], равной 8 мм.
Наружные диаметры шкивов, мм определяем по формуле 3.9:
(3.10)
где b – принимаем согласно [3], равным 2,5 мм.
,
.
Диаметры по дну канавки, мм определяем по формуле 3.11:
(3.11)
где Н – принимаем согласно [3], равным 10 мм.
d j1 = 68 – 2 * 10 = 48
d j2 = 245 – 2 * 10 = 225
Диаметры ободов, мм определяем по формуле 3.12
d обi = d Ii – 2d (3.12)
где d-принимаем согласно [3], равной 6 мм.
d об1 = 48 – 2 * 6 = 36
d об2 = 225 – 2 * 6 = 213
Исходными данными для расчёта вала являются крутящий момент на валу Т3, равный 262 н*м и вес коробки передач равный 1176 Н, схема нагружения представлена на рисунке 3.7.
Рисунок 3.7 - Схема нагружения рабочего вала
Принимаем расстояния L1 равным 150 мм, расстояние L2 равным 200 мм, расстояние L3 равным 200 мм.
Подбираем материал вала, согласно [2] и определяем допускаемые напряжения. Для изготовления вала принимаем сталь 45 с
пределом прочности sв равным 510 МПа, ГОСТ 1050–88.
Допускаемые напряжения на изгиб, МПа находим по формуле 3.13
[sи] = s -1: ([n] K б), (3.13)
где s-1 – предел выносливости, равен 219 МПа;
[n] – коэффициент запаса прочности, принимаем 2;
К б – коэффициент концентрации напряжений равен 2.2.
[sи] = 219: (2 * 2.2) = 50
Допускаемые напряжения на кручение, МПа определяем используя формулу 3.14
[t] = 0.5 [sи] (3.14)
[t] = 0.5 * 50 = 25
Строим расчётную схему сил, действующих в вертикальной плоскости рисунок 3.8.а.
Рисунок 3.8. Расчётные схемы рабочего вала стенда
а-силы действующие на вал в в вертикальной плоскости; б-эпюра изгибающих моментов в ветикальной плоскости; в-эпюра крутящего момента; г-эпюра эквивалентного момента.
Определяем реакции на опорах, Н от сил в вертикальной плоскости используя рисунок 3.8.а:
![]()
;
;
.
![]()
;
;
.
Определяем изгибающие моменты от сил, действующих в вертикальной плоскости, Нмм:
в сечении 1–1
M u1 = Gk (L1 + L4)
M u1 = 1176 * (150 + 58) = 244608
в сечении 2–2
M u2 = Gk (L1 + L2)
M u2 = 1176 * (150 + 100) = 294000
По найденным значениям строим эпюру изгибающих моментов представленную на рисунке 3.8.б.
Рассматривать вал в горизонтальной плоскости не имеет смысла так как силы действующие на вал в этой плоскости незначительны по сравнению с вертикальными и ими можно принебречь.
Строим эпюру крутящего момента, действующего на весь вал и имеющего постоянное значение, рисунок 3.8.в.
Определяем эквивалентные моменты, Нмм:
в сечении 1–1
;
Популярное на сайте:
Построение универсальной динамической характеристики автомобиля
автомобиль двигатель вал передача Динамической характеристикой автомобиля называют графически выраженную зависимость динамического фактора от скорости движения автомобиля на разных передачах. Универсальная динамическая характеристика автомобиля является его основным техническим документом. Динамиче ...
Выбор теоретического закона распределения, построение
графика дифференциальной и интегральной функции
Исходя из сходства внешнего вида полигона экспериментальных значений дифференциальной функций распределения и теоретических кривых f(x), а также рассчитанного значения коэффициента вариации ( и анализа физических закономерностей формирования нормального закона распределения, предполагаем, что для р ...
Назначение конструкции, типа и характеристики верхнего строения пути
Каждому классу путей соответствует конструкция верхнего строения пути, тип и его характеристика. На основании выбранного класса пути в соответствии с техническими условиями на укладку и ремонт пути, по табл. 1.2 и 1. 3 назначаем конструкцию и тип верхнего строения пути и приводим полную характерист ...