Проектирование и устройство стенда для разборки и сборки коробок передач автомобилей ЗИЛ-130

Современный транспорт » Проектирование и устройство стенда для разборки и сборки коробок передач автомобилей ЗИЛ-130

Страница 6

, (3.9)

где z – количество ремней;

e – принимаем согласно [3], равной 12 мм;

f – принимаем согласно [3], равной 8 мм.

Наружные диаметры шкивов, мм определяем по формуле 3.9:

(3.10)

где b – принимаем согласно [3], равным 2,5 мм.

,

.

Диаметры по дну канавки, мм определяем по формуле 3.11:

(3.11)

где Н – принимаем согласно [3], равным 10 мм.

d j1 = 68 – 2 * 10 = 48

d j2 = 245 – 2 * 10 = 225

Диаметры ободов, мм определяем по формуле 3.12

d обi = d Ii – 2d (3.12)

где d-принимаем согласно [3], равной 6 мм.

d об1 = 48 – 2 * 6 = 36

d об2 = 225 – 2 * 6 = 213

Исходными данными для расчёта вала являются крутящий момент на валу Т3, равный 262 н*м и вес коробки передач равный 1176 Н, схема нагружения представлена на рисунке 3.7.

Рисунок 3.7 - Схема нагружения рабочего вала

Принимаем расстояния L1 равным 150 мм, расстояние L2 равным 200 мм, расстояние L3 равным 200 мм.

Подбираем материал вала, согласно [2] и определяем допускаемые напряжения. Для изготовления вала принимаем сталь 45 с

пределом прочности sв равным 510 МПа, ГОСТ 1050–88.

Допускаемые напряжения на изгиб, МПа находим по формуле 3.13

[sи] = s -1: ([n] K б), (3.13)

где s-1 – предел выносливости, равен 219 МПа;

[n] – коэффициент запаса прочности, принимаем 2;

К б – коэффициент концентрации напряжений равен 2.2.

[sи] = 219: (2 * 2.2) = 50

Допускаемые напряжения на кручение, МПа определяем используя формулу 3.14

[t] = 0.5 [sи] (3.14)

[t] = 0.5 * 50 = 25

Строим расчётную схему сил, действующих в вертикальной плоскости рисунок 3.8.а.

Рисунок 3.8. Расчётные схемы рабочего вала стенда

а-силы действующие на вал в в вертикальной плоскости; б-эпюра изгибающих моментов в ветикальной плоскости; в-эпюра крутящего момента; г-эпюра эквивалентного момента.

Определяем реакции на опорах, Н от сил в вертикальной плоскости используя рисунок 3.8.а:

;

;

.

;

;

.

Определяем изгибающие моменты от сил, действующих в вертикальной плоскости, Нмм:

в сечении 1–1

M u1 = Gk (L1 + L4)

M u1 = 1176 * (150 + 58) = 244608

в сечении 2–2

M u2 = Gk (L1 + L2)

M u2 = 1176 * (150 + 100) = 294000

По найденным значениям строим эпюру изгибающих моментов представленную на рисунке 3.8.б.

Рассматривать вал в горизонтальной плоскости не имеет смысла так как силы действующие на вал в этой плоскости незначительны по сравнению с вертикальными и ими можно принебречь.

Строим эпюру крутящего момента, действующего на весь вал и имеющего постоянное значение, рисунок 3.8.в.

Определяем эквивалентные моменты, Нмм:

в сечении 1–1

;

Страницы: 1 2 3 4 5 6 7

Популярное на сайте:

Основные задачи и методы кинематического исследования механизмов
Кинематическое исследование состоит в изучении движения отдельных точек (звеньев) механизма независимо от сил, вызывающих это движение. Основной задачей кинематического исследования является определение: 1. положения всех звеньев при любом мгновенном положении ведущего звена; 2. траектории движения ...

Методика нормирования слесарных работ при ремонте блока цилиндров
Техническое нормирование труда - это система установления минимально необходимых затрат времени на выполнение определенной работы. С целью изучения и анализа затрат рабочего времени предусмотрена единая классификация этих затрат, в соответствии с которой все рабочие время подразделяется на нормируе ...

Расчет оси колесной пары вероятностным методом
В данном пункте курсового проекта исследуем зависимость напряженного состояния и значений коэффициента запасов усталостной прочности оси от осевой нагрузки (массы вагона брутто). Расчёт новой оси колёсной пары при ее проектировании или оценке прочности стандартной (типовой) оси при намечаемом измен ...

Главное меню

Copyright © 2020 - All Rights Reserved - www.transpostand.ru