3) À3Á3-Á3À2-À2Á4-Á4À3,
Ýêñïëóàòàöèîííîå êîëè÷åñòâî àâòîìîáèëåé ïî ìàðøðóòó
, (3.15)
ãäå Qïë – ïëàíîâîå ÷èñëî òîíí, êîòîðîå íåîáõîäèìî ïåðåâåçòè ïî ìàðøðóòó
1) À1Á1-Á1À1,
2) À1Á2-Á2À1,
3) À3Á3-Á3À2-À2Á4-Á4À3,
Îïðåäåëÿåì êîëè÷åñòâî àâòîìîáèëå-÷àñîâ â íàðÿäå íà ìàðøðóòå çà ñóòêè
(3.16)
1) À1Á1-Á1À1,
2) À1Á2-Á2À1,
3) À3Á3-Á3À2-À2Á4-Á4À3,
3.4.1.12 Îïðåäåëÿåì àâòîìîáèëå-äíè â ýêñïëóàòàöèè ïî ìàðøðóòó
(3.17)
1) À1Á1-Á1À1,
2) À1Á2-Á2À1,
3) À3Á3-Á3À2-À2Á4-Á4À3,
Îïðåäåëÿåì îáùèé ïðîáåã àâòîìîáèëåé ïî ìàðøðóòó çà ðàñ÷¸òíûé ïåðèîä
(3.19)
1) À1Á1-Á1À1,
2) À1Á2-Á2À1,
3) À3Á3-Á3À2-À2Á4-Á4À3,
Îïðåäåëÿåì ãðóæåííûé ïðîáåã àâòîìîáèëåé ïî ìàðøðóòó çà ðàñ÷¸òíûé ïåðèîä
(3.20)
1) À1Á1-Á1À1,
2) À1Á2-Á2À1,
3) À3Á3-Á3À2-À2Á4-Á4À3,
3.4.1.15 Îáú¸ì ïåðåâîçîê â òîííàõ çà ðàññìàòðèâàåìûé ïåðèîä
(3.21)
1) À1Á1-Á1À1,
2) À1Á2-Á2À1,
3) À3Á3-Á3À2-À2Á4-Á4À3,
Ñóòî÷íàÿ ïðîèçâîäèòåëüíîñòü àâòîìîáèëÿ â ò.êì
WPÑÓÒ=nê*Zîá*qê*(YÊ1+YÊ2+….+YÊn)+Wêñóò*Gê *(YÊ1+YÊ2+….+YÊn) (3.22)
À1Á1-Á1À1,
WPÑÓÒ=8ê*4îá*0,375ê*(0,8ê*15åã)+32êñóò*0,250ê *15Ê=264 ò.êì.
2) À1Á2-Á2À1, WPÑÓÒ =
= 8ê*4îá*0,375ê*(0,8ê*17åã)+32êñóò*0,250ê*17Ê=136 ò.êì.
3) À3Á3-Á3À2-À2Á4-Á4À3
WPÑÓÒ=8ê*2îá*0,375ê*(0,8ê*13åã1+0,8ê*17åã2)+32êñóò*0,25ê*(13åã1+17åã2)=240 ò.êì.
Îïðåäåëÿåì ãðóçîîáîðîò, ò.êì
(3.23)
1) À1Á1-Á1À1,
2) À1Á2-Á2À1,
3) À3Á3-Á3À2-À2Á4-Á4À3,
Ïîïóëÿðíîå íà ñàéòå:
Âëèÿíèå òåìïåðàòóðû íà òðåíèå â ãèäðîîáîðóäîâàíèè
Òðåíèå â ãèäðîîáîðóäîâàíèè îêàçûâàåò ñóùåñòâåííîå âëèÿíèå íà ðàáîòîñïîñîáíîñòü ãèäðàâëè÷åñêîãî ïðèâîäà. Íàïðèìåð, ïîâûøåíèå ñèëû òðåíèÿ â ãèäðîäâèãàòåëÿõ (ãèäðîöèëèíäðàõ è ãèäðîìîòîðàõ) ñíèæàåò ïîëåçíûå óñèëèÿ íà øòîêå è âàëó, òåì ñàìûì óìåíüøàåò ãðóçîïîäúåìíîñòü èëè óñèëèå ðåçàíèÿ ãðóíòà. Ïîâûøåíè ...
Óâÿçêà äâóõïóòíîé è îäíîïóòíîé àâòîáëîêèðîâêè ñî ñòàíöèîííûìè óñòðîéñòâàìè
Íà ïîäõîäàõ ê ñòàíöèÿì ñèãíàëüíûå óñòàíîâêè àâòîáëîêèðîâêè óâÿçûâàþò ñ óñòðîéñòâàìè ðåëåéíîé öåíòðàëèçàöèè ñòàíöèé. Óâÿçêó ïðîèçâîäÿò êàê íà êðóïíûõ ñòàíöèÿõ, îáîðóäîâàííûõ óñòðîéñòâàìè ÁÌÐÖ, òàê è íà ïðîìåæóòî÷íûõ, îñíàùåííûõ óñòðîéñòâàìè ðåëåéíîé öåíòðàëèçàöèè ñ ìåñòíûìè èëè öåíòðàëüíûìè çàâèñèìî ...
Ðàñ÷åòû ïàðàìåòðîâ äëÿ ðàçëè÷íûõ ÒÒÑ
1) Ñ1 = 151,7 + 1280 + 142,5 + 17550 + 142,5 + 450 + 142,5 + 1860,8 = 21720 $; Ò1 = 1 + 0,06 + 1 + 0,63 + 1 + 2 + 1 +1 = 7,69 äí.; 2) Ñ2 = 151,7 + 1280 + 142,5 + 17550 + 142,5 + 450 + 175 + 4299,2 = 24190,9 $; Ò2 = 1 + 0,06 + 1 + 0,63 + 1 + 2 + 1+ 1 = 7,69 äí.; 3) Ñ3 = 151,7 + 1280 + 142,5 + 17550 ...