Определение степени подвижности плоского механизма

Степень подвижности плоских механизмов определяется по формуле П. Л. Чебышева:

W = 3n – 2P5 – P4 (1.1)

где: W – степень подвижности механизма;

n – число подвижных звеньев механизма;

P5 – число кинематических пар пятого класса;

P4 – число кинематических пар четвертого класса.

Степень подвижности механизма определяет число ведущих его звеньев, т. е. количество звеньев, которым необходимо задать движение, чтобы все остальные звенья двигались по вполне определенным законам.

Определение класса механизма

Класс механизма в целом определяется классом самой сложной его структурной группы.

Механизм раскладывается на структурные группы, начиная с самого удаленного от ведущего звена. При этом всякий раз проверяется степень подвижности оставшегося механизма.

Механизм имеет пять подвижных звеньев, соединенных между собой семью кинематическими парами.

Определяем степень подвижности механизма по формуле:

W = 3n – 2P5 – P4, (1.2)

где n = 5; P5 = 7; P4 = 0,

тогда

W = 3×5 – 2×7 = 1.

Это значит, что в данном механизме должно быть одно ведущее звено. В качестве ведущего звена принимаем звено 1 – кривошип. Далее раскладываем механизм на структурные группы и, прежде всего, отсоединяем самую удаленную от ведущего звена группу Ассура, состоящую из звеньев 4 и 5 и двух вращательных кинематических пар – IV, VI и одной поступательной VII. Степень подвижности этой группы после присоединения к стойке равна нулю:

W = 3×2 – 2×3 = 0.

Группа звеньев 4 и 5 (CD) является группой II класса.

Затем отсоединяем группу, состоящую из звеньев 2, 3 и трех кинематических пар – вращательных – II, III, V.

Степень подвижности этой группы после присоединения к стойке, как и в предыдущем случае, равна нулю.

Группа звеньев 2 и 3 (ABO2) является группой II класса.

После отсоединения указанных групп остался исходный механизм, состоящий из кривошипа I (O1A), присоединенного к стойке вращательной парой I, и имеющий степень подвижности:

W = 3×1 – 2×1 = 1.

Весь механизм является механизмом II класса. Структурная форма для данного механизма составляется в порядке образования механизма (ведущее звено и все группы Ассура по порядку):

[1] – [3; 2] – [5; 4] .

Популярное на сайте:

Технические требования к вагонам
Универсальные крытые вагоны, полувагоны и платформы магистральных железных дорог, а также вагоны промышленного транспорта должны соответствовать техническим требованиям ГОСТ 10935 - 69, 10936 - 75, 7488 - 74 и 5973 - 78, а также утвержденным чертежам и техническим условиям. Приняты следующие наибол ...

Расчет расхода тепла
Годовой расход тепла: (12.1) где Qм – часовой расход тепла; п – количество дней отопительного периода (относительно г. Сыктывкара п = 244 дня); 24 – количество часов в сутки; 106 – число, переводящее полученный результат в ГДж. Часовой расход тепла: (12.2) где V – объем отапливаемого помещения (сов ...

Расчет годовой производственной программы
Нормативы периодичности ТО, пробега до КР, трудоемкости единицы ТО, ЕО и ТР/1000км для автомобилей МАЗ 54331 принимаются согласно "Положению о ТО и ремонте подвижного состава автомобильного транспорта". =8000 км, [1, таблица 2.1]. =24000 км, [1, таблица 2.1]. tНЕО=0,4 чел.-ч., [1, таблица ...

Главное меню

Copyright © 2023 - All Rights Reserved - www.transpostand.ru