Взаимодействие шины с дорогой и факторы, определяющие ресурс шин

Страница 1

Процессы в пятне контакта.

На шину при движении действуют нормальная нагрузка G и касательная сила Q. Они вызывают в пятне контакта шины с дорогой площадью F удельное давление q =G/F и касательное напряжение t = Q/F. Отношение t к q характеризует напряженность элемента шины в контакта =t/ q. Если она равна или больше коэффициента сцепления шины с дорогой, то начинается проскальзывание. Это главная причина износа протектора. В различных точках контакта напряженность t неодинакова. Она зависит от условий движения, нагруженности шины, углов установки колес, величины давления воздуха в шине и др. (рис. 1.6.2).

Рис. 1.6.2. Распределение удельных сил в центральном продольном сечении площади контакта: 1 — скорость до 100 км/ч; 2 — скорость свыше 100 км/ч; 3.7 — предел сцепления (произведение удельных давлении на коэффициент трения); 4 — ведущий режим; 5 — ведомый режим; 6 — тормозной режим; /2 — зоны проскальзывания.

Несоответствие любого из перечисленных факторов оптимальным параметрам вызывает проскальзывание отдельных элементов пятна контакта и неравномерный износ протектора. Так, с уменьшением давления воздуха увеличивается и возрастает предрасположенность элементов протектора к проскальзыванию. Углы установки колес (особенно угол схождения) при отклонении их от норматива приводят к увеличению поперечных касательных напряжений. На выходе шины из пятна контакта превышается предел сцепления с опорной поверхностью и происходит проскальзывание.

Для радиальных шин и шин с изношенным рисунком протектора касательные напряжения всегда меньше.

Критическая скорость качения. Увеличение скорости качения приводит к изменению характера эпюры q (см. рис. 1.6.2) и проскальзыванию элементов протектора. С дальнейшим увеличением скорости шина подвергается действию инерционных сил. Частота деформации элементов шины начинает совпадать с их собственной частотой. Скорость восстановления формы шины после прохождения контактной зоны меньше скорости выхода элементов из контакта. В результате из контакта выходят невосстановленные элементы, которые под действием упругих и инерционных сил также начинают колебаться. Резонансные явления приводят к возникновению волн на боковинах и беговой дорожке. Наступает критическая скорость качения и, как следствие, разрыв шины.

Критическая скорость шины всегда выше максимальной скорости автомобиля, для которого она рекомендована. Однако нагружение автомобиля выше нормы, а особенно пониженное давление в шине резко снижают порог критической скорости, поэтому, согласно ГОСТ 4754— 80, при предстоящем движении легкового автомобиля (более 1 ч) со скоростью свыше 120 км/ч давление воздуха в шинах следует повысить на 0,03 МПа относительно нормы.

Аквапланирование. При движении по мокрой дороге на низких и средних скоростях выступы протектора шины успевают продавить водяную пленку. Из пятна контакта вода выводится через канавки протектора, которые выполняют роль дренажа. При больших скоростях количество выводимой в единицу времени воды растет, и дренаж с этим может не справиться. Между протектором и дорогой появляется водяной клин, нарушающий контакт шины с опорной поверхностью. Возникает аквапланирование, и автомобиль становится неуправляемым. Скорость аквапланирования зависит от скорости автомобиля, толщины водяной пленки вязкости (загрязнения) воды, конструкции шины (отношение Н/В), давления воздуха в шине достаточной высоты рисунка протектора.

Страницы: 1 2 3 4 5

Популярное на сайте:

Пересчет рабочих характеристик ТЭД и предварительное определение ограничений тяговой характеристики тепловоза
Электромеханическими характеристиками ТЭД, которые являются одним из видов рабочих характеристик, называются зависимости крутящего момента М, частоты вращения вала n и коэффициента полезного действия h от тока якоря IЯ : ; при приложенном напряжении , изменяющемся в соответствии с внешней характери ...

Технология разборки-сборки узла
Во время прохождения мною производственной практики в ООО "РусАвто" Смоленск, были произведены следующие работы: · разборка автомобиля УАЗ 3909 на агрегаты и узлы; · снятие двигателя с автомобиля УАЗ 29095; · разкомплектация автомобиля УАЗ 469 на узлы и агрегаты. Рассмотрим автомобиль УАЗ ...

Определение степени подвижности плоского механизма
Степень подвижности плоских механизмов определяется по формуле П. Л. Чебышева: W = 3n – 2P5 – P4 (1.1) где: W – степень подвижности механизма; n – число подвижных звеньев механизма; P5 – число кинематических пар пятого класса; P4 – число кинематических пар четвертого класса. Степень подвижности мех ...

Главное меню

Copyright © 2023 - All Rights Reserved - www.transpostand.ru